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Synthesis and Structure of Crystalline [K{Sn(CH,But);}(n-C¢HsMe)s] and the First NMR

Spectral Observation of 112Sn—-39K Couplingt

Peter B. Hitchcock, Michael F. Lappert, Gerard A. Lawless and Beatriz Royo
School of Chemistry and Molecular Sciences, University of Sussex, Brighton, UK BN1 9QJ

Treatment of [Sn,(CH,But)g] with K in tetrahydrofuran (thf) at 25 °C affords crystalline [K{Sn(CH,But)s}{thf),] 1, which
with toluene gives [K{Sn(CH,But);}(né-C¢HsMe)s] 2, the X-ray structure of 2 at 295 K revealing that potassium is in a
distorted tetrahedral environment (taking each of the né-toluene molecules as occupying a single site), with [(K-Sn)
3.548(3) A and /(K—C) ranging from 3.21 t0 3.72 A; a solid state 119Sn cross-polarisation magic angle spinning (CP-MAS)
NMR spectral study of 2 provides the first observation of direct 119Sn—39K coupling.

As recently noted by Wright and coworkers, despite the
important role of tri(hydrocarbyl)stannyl-alkali metal com-
plexes as organic synthetic auxiliaries,! or their use as SnRj
ligand-transfer reagents {as in the synthesis of [Zr(n-
C5H5)2(Cl)(SnPh3)]2 or [Yb{Sn(CHzBu‘)3}2(thf)], thf =
tetrahydrofuran)3}, little is known relating to their isolation or
structural characterisation in solution or the solid state.

We now report (i) the preparation (Scheme 1) of the
monomeric, crystalline, hydrocarbon-soluble complexes
[K{Sn(CH,But);}(thf),] 1 and [K{Sn(CH,But);}(n®-PhMe);]
2;% (i) their NMR spectral characterisation in C¢Dg¢ 1 or

1

K- [K{Sn(CH;But);}(thf),] —
1

[K{ Sn(CHsz);} (no-CsHsMe);]

Scheme 1 Reagents and conditions: i, 1/2 Sn,(CH,But)s, naphthalene,
thf, 25°C, 16 h (then removal of volatiles in vacuo and recrystallisation
from thf; 97% yield); ii, PhMe, 25°C, 10 min. Alternatively, 2 was
obtained without isolating crystalline 1.

+ No reprints available.

t Preparation of 2: A suspension of K (0.22 g, 5.89 mmol) in thf (150
cm?) containing Sny(CH,But)s (1.7 g, 2.94 mmol) and naphthalene
(0.09 g) was stirred at ca. 25°C for 12 h. Volatiles were removed at
25°C/10-2 mmHg. The residual yellow solid was extracted into
toluene (ca. 60 cm?), the extract was concentrated (to ca. 25 cm?3) in
vacuo and cooled (—30°C) to yield yellow crystals of 2 (3.09 g, 5.06
mmol), m.p. 171°C.

[2Hg|toluene 2;§ (iii) the cross-polarisation magic angle
spinning {CP-MAS) 119Sn NMR spectrum of solid 2 (Fig. 1),
showing the first example of direct 119Sn—3°K coupling;§ and
(iv) the X-ray structuref of 2, Fig. 2, showing potassium
remarkably to have 19 non-hydrogen nearest neighbours (Sn
+ 18C) at distances of < 3.75 A.

The method of preparing 1 (i in Scheme 1, 97%, satisfactory
C/H analyses) had previously been used (but without its

§ NMR chemical shifts (&) {at 300 K in C¢D for 1 and [?Hg]PhMe for
2, for 'H at 250 MHz, 13C at 125.8 MHz, and 1'%Sn at 186.5 MHz}, H:
11.06 (s, 6H), 1.28 (m, 8H), 1.40 (s, 27H), 3.54 (m, 8H), and 2 1.31 (s,
6H), 1.50 (s, 27H), 2.30 (s, 9H), 7.30 (m, 15H); BC{'H): 1 35.0
(CHs), 33.07 (CH»), 31.4 (C), 25.72 (thf), 67.75 (thf), and 2 21.20
(CeHsCH3), 31.50 (C), 33.20 (CH,), 35.20 (CH3), 124.15 (Cy), 125.21
(Cag), 127.20 (Cs.5), 128.50 (C4); 119Sn{!H}: 1 =221 (s), and 2 —221
(s). The 19Sn CP-MAS spectrum for solid 2: & —211 [q, J('1°Sn—*K)
289 Hz].

9 Crystal data for 2 [T 295 K, Enraf-Nonius CAD-4 diffractometer,
Mo-K« radiation (A = 0.71069 13;)], no crystal decay, full-matrix
least-squares refinement with non-hydrogen atoms (other than
carbons of PhMe) anisotropic. Hydrogen atoms fixed: C atoms of
toluene isotropic (attempts to refine them anisotropically led to their
positions becoming unstable); w = 6=2(F). C3sHs;KSn, M = 647.6,
monoclinic, space group P2//c, a = 10.886(2), b = 35.095(16), ¢ =
10.139(2) A, § = 91.65(2), U=3871.7A3,Z =4, D, = 1.11 gecm™3,
F(000) = 1368, w(Mo-Ka) = 7.8 cm~!, specimen, 0.3 X 0.3 X 0.3 mm.
3703 Unique reflections for 2 < 6 < 25°, of which 2234 with [F2| >
20(F?) were used in the refinement; R = 0.058, Rw = 0.072, § = 2.0.
Atomic coordinates, bond lengths and angles, and thermal para-
meters have been deposited at the Cambridge Crystallographic Data
Centre. See Notice to Authors, Issue No. 1.
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Fig. 1 119Sn CP-MAS NMR spectrum of 2; * denotes isotropic shift

C(5)

Fig. 2 X-Ray structure of [K{Sn(CH,Bu");}(n%-C¢HsMe);] 2 with
atom numbering scheme. Selected intramolecular bond lengths (A)
and angles (°): K-Sn 3.548(3), K-M1 3.13, K-M2 3.35, K-M3 3.41,
K-Sn—-C(1) 125.0(4), K-Sn—-C(6) 122.5(4), K-Sn—-C(11) 124.6(3),
Sn-K-M1 113.3, Sn-K-M2 110.6, Sn—-K-M3 107.7 [where M1, M2,
and M3 are the mid-points of the C(16) to C(21), C(23) to C(28), and
C(30) to C(35) rings, respectively].

isolation or formulation as 1) in the course of the synthesis of
[Yb{Sn(CH,Bu!);},(thf),].? It is noteworthy that crystallisa-
tion of 1 from toluene yielded 2, thereby demonstrating a
surprising toluene/thf displacement reaction.}

The !19Sn{!H} NMR spectrum of 2 in [2Hg|toluene§
revealed a single signal at § —221; 119Sn—39K coupling was not
observed, probably due to the low site symmetry at the
quadrupolar 39K nucleus. In contrast, such coupling for 2 was
observed in the solid-state CP-MAS NMR spectrum, as a
1:1:1:1 quartet at 8;, —211, 1J(119Sn-39K) 289 Hz, Fig. 1.

The molecular structure at 295 K of crystalline
[K{Sn(CH;,BuY3}(n%-C¢HsMe);] 2, Fig. 2, shows that the
potassium is in a distorted tetrahedral environment, with the
three toluene molecules coordinated to K in an né-fashion, av.
I(K-M) 3.30 A, av. Sn—-K-M 110.5°, and /(K-Sn) 3.548(3) A
(M being the mid-point of the aromatic ring). The tin
environment, relative to the a-carbons of the neopentyl
groups, is pyramidal with av. C-Sn—C 91.7°, indicating that the
tin—carbon bonds have little s-character.
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The sole prior examples of X-ray-characterised crystalline
trithydrocarbyl)stannyl-alkali ~metal complexes were
[Li(SnPhs)(pmdeta)] ~ 3,!  [Sn(n-CsHs)a(u-n-CsHs){Na-
(pmdeta)}] 4,4 [K(18-crown-6][SnPhs] 5,5 and [Li(diox-
ane)4][Li{Sn(CH,C(CH)30);},] 6;° the lead analogue of 3 has
been reported’” [pmdeta = (Me,NCH,CH,),NMe]. The
geometry associated with the SnC; fragment in each of 2,3, 5
and 6 is broadly similar, with the av. C-Sn-C angle being
96.1(2)° in 3,! 96.9° in 5,5 and ca. 90° in 6.5 However,
the closest K---Sn contact in 5 is > 6 A;5 in 3, I(Li-Sn),, is
2.871(7) A [the 119Sn NMR spectrum was not recorded, but
LJ(PLi~119/1178n) of ca. 412 Hz was observed in the ’Li NMR
spectrum at —90°C].!

Related crystalline stannyl-alkali metal complexes to have
been described are [Sn(u-OAr);Li] [Ar = CsH5Ph,-2,6 with
I(Sn-+-Li) 2.784(4) A],8 [K{Sn(OsiPh3);}(dme)] [dme =
(MeOCH,),, with av. {(K-Sn) 3.470(4) A and 6(1!%Sn) in thf
—-360.5],° [K(18-crown-6)(n2-PhMe),][K{Sn(OSiPh;);},(18-
crown-6] 7 [with I(K-Sn) 3.4894(9) AL [Sn(OBut)(u-
OBu)M(OBuH)M(u-OBut)Sn(OBut)] (M = Li or Na) [av.
I(Sn---Na) 3.45 A],10 and {M{Sn(OBu);}].. (M = K, Rb, or
Cs).10

Alkali-metal-arene ion-dipole interactions have been
described as present in certain ‘liquid clathrates’ such as
K[ALLMes(NO53)]7CsHg  yielding crystals of K[AlMe;-
(ONO,)(n6-C¢Hg)].*! The coordination of more than one
arene molecule to an alkali metal is unusual, but recent
examples include 7 (n2-PhMe),? [Lu{CH(SiMes),}s(p-
CHK(n6-PhMe),]!12 and [K(u3-OSiMe,Ph)(n6-C¢Hg)ls.13 In
such K(n¢- arene) complexes, the K-C distance has been in the
range 3.18 t0 3.59 A.The binding energy of benzene to K+ has
been calculated as ca. 80 kJ mol—1.14

The crystalline hydrocarbon-soluble [K{SnNp3)(ns-
PhMe);] 2 is thus far unique in stannyl-alkali metal complex
chemistry, and even among mononuclear group 14-group 1
compounds in being free from O- or N-centred ligands.
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